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Abstract

Energetic particle flux enhancement events observed by satellites during

strongly disturbed events in the magnetosphere (e.g., substorms, storm sud-

den commencements, etc.) are studied by considering interaction of particles

with Earthward propagating electromagnetic pulses of westward electric field

and consistent magnetic field of localized radial and azimuthal extent in a

background magnetic field. The energetic particle flux enhancement is mainly

due to the betatron acceleration process: particles are swept by the Earth-

ward propagating electric field pulses via the E × B drift toward the Earth

to higher magnetic field locations and are energized because of magnetic mo-

ment conservation. The most energized particles are those which stay in the

pulse for the longest time and are swept the longest radial distance toward

the Earth. Assuming a constant propagating velocity of the pulse we obtain

analytical solutions of particle orbits. We examine substorm energetic particle

injection by computing the particle flux and comparing with geosynchronous

satellite observations. Our results show that for pulse parameters leading to

consistency with observed flux values, the bulk of the injected particles arrive

from distances less than 9 RE, which is closer to the Earth than the values

obtained by the previous model [1] and is also closer to the distances obtained

by the injection boundary model.
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I. INTRODUCTION

Energetic electron and ion flux enhancement events in the magnetosphere are usually

related to strongly disturbed events such as substorms and storm sudden commencements

(SSC). It is well known that energetic particles appear at geosynchronous orbit (6.6 RE)

subsequent to a substorm expansion phase, in a narrow “wedge” at or near local midnight

[2]. The increase in the flux of these high-energy particles can be very large (two or three

orders of magnitude larger than the “quiet time” flux). This increase happens simultaneously

for energetic particles having a broad range of energies, and for this reason these events have

been called “dispersionless injections.” Similar flux increases, involving ions and electrons

of much higher energies, characterize the formation of new radiation belts following storm

sudden commencements (SSC). Investigations using two radially displaced satellites showed

[3] that the particle injection occurs first at the outer satellite, thus suggesting that the

injected particles come from farther out in the magnetosphere.

Besides their “dispersionless” nature, another feature of the energetic particle injection

is the appearance of subsequent peaks at periodic time intervals after the first flux increase,

these subsequent peaks manifesting greater and greater dispersion. These peaks are called

“drift echoes” [4], and their explanation resides in the ∇B and curvature drifts of particles,

eastward for electrons and westward for ions [5].

Several models attempting to explain these injections have been proposed in the past.

One promising model is based on an Earthward propagating electromagnetic field pulse: par-

ticles are energized via the betatron acceleration mechanism (based on magnetic moment

conservation) as they are swept by the pulse to a location of higher magnetic field strength

closer to the Earth. While test particle simulations based on this model have been exten-

sively performed [1,6], in this paper we seek greater physical insight by providing analytical

solutions for non-relativistic particle motion. Our field model and particle orbit solutions

are qualitatively different from the previous simulations [1,6] in that by using pulse fields

obtained in the cylindrical symmetry, we obtain that enhanced energetic particle fluxes ob-
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served at geosynchronous orbit during substorms are due to particles coming mainly from

distances less than 9RE away from the Earth, which is much closer to the Earth than the

distance obtained by the previous simulation studies.

Past investigations [7] showed that large transient electric fields exist in the plasma sheet

during the substorm expansion phase. We consider the electric field to be accompanied by

a consistent magnetic field, forming a pulse that propagates towards the Earth. Correlation

studies which support this picture of consistent inductive E and B fields have been previously

performed [8].

II. ENERGETIC PARTICLE FLUX ENHANCEMENT MODEL

In order to consider the effect of the disturbed magnetospheric event on particle trans-

port, we consider an Earthward-propagating pulse with velocity V0 consisting of westward

E and consistent δB. The electric and magnetic fields of the pulse are related by Faraday’s

law:

∂(δB)

∂t
= −∇× E (1)

We consider the cylindrical (r, φ, z) coordinate system with r = 0 at the center of the Earth,

z = 0 defines the equatorial plane (where our particle motion takes place), and φ is zero at

midnight, positive eastward (see Fig. 1). Then, Eq. (1) in the z-direction for an azimuthally

directed electric field is:

∂

∂r
(rEφ) = −∂ (r δBz)

∂t
(2)

Assuming that the pulse propagates Earthward (in the negative r direction) with a constant

velocity V0, it follows from (2) that the solution has the form rEφ = f(r + V0t, φ) and

δBz = −Eφ

V0
(3)

For Eφ < 0 and V0 > 0 as seen in Fig. 1, we have δBz > 0. In our examples we will show

how similar results for the particle flux can be obtained using different pulse parameters.
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FIG. 1. Electric field Eφ and magnetic field δBz of the Earthward-propagating pulse; B0 is the

background magnetic field.

The particle motion will be calculated in the combined pulse and background magnetic

fields. The motion conserves the magnetic moment, because the temporal variation of the

pulse is much longer than the particle gyration time scale and the spatial variation of the

pulse is much larger scales than the particle gyro-radii. For particle energy in the range

of 100 keV and pulse speed ∼ 200 km/s and pulse scale length ∼ 10, 000 km, we have the

following relations between gyro-periods Tce ∼ 10−4 s � Tci ≤ 1 s � |Eφ/ (∂Eφ/∂t)| ∼ 50 s

and gyro-radii ρe ∼ 1 km � ρi ∼ 100 km � |Eφ/ (∂Eφ/∂r)| ∼ 10, 000 km, so the first

adiabatic invariant is easily conserved by ion and electron motions in the pulse.

We only consider 90◦ pitch angle particles with v‖ = 0. Thus, the particle orbit is

governed by the guiding center equation of motion:

Vgc =
dr

dt
= VE×B + V∇B, (4)

where

VE×B =
E×B

B2
, (5)

V∇B =
µ

qB2
B×∇B, (6)

q is the particle charge and µ = mv2
⊥/(2B) is its magnetic moment. Eq. (6) is the non-

relativistic form of the ∇B drift. Our non-relativistic theory can be applied to ion injection

during any magnetospheric event and may also be used to approximate electron motion for
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energies lower than the electron rest energy. There is no curvature drift in (4) because we

only consider particles with v‖ = 0.

One notices that in the moving pulse the field varies both in time and space, so one would

have to include the polarization drift Vp = mĖ⊥/(qB2) in Eq. (4). However, a comparison

between this drift and the ∇B drift which is in the same direction shows that the former

is much smaller for particles with speeds above the pulse speed V0, i.e. ions with energies

above 100 eV. This is much below the average proton energy in our regions of interest, so

we can neglect the polarization drift.

The variation of the particle energy as it moves in the electromagnetic fields of the pulse

is then given by [9]:

dW

dt
= qVgc · E + µ

∂B

∂t
+O(ε2) (7)

where O(ε2) represents terms of order ε2 and higher, with ε = ρ/L � 1 (L is the scale

length over which the pulse fields vary). The E×B drift gives no contribution to Vgc · E,

so Vgc · E = V∇B · E = µ∇B ·Vgc/q. Because Vgc = dr/dt, Eq. (7) becomes (neglecting

the higher-order terms):

dW

dt
= µ∇B · dr

dt
+ µ

∂B

∂t
= µ

dB

dt
(8)

This shows that as long as µ is conserved the particle energy is changed by changing the

magnetic field intensity at its location (either by the particle moving to locations with

a different magnetic field intensity or by the time variation of the field intensity). The

convective term in Eq. (8) represents the change in energy by moving the particle gyro-

center to locations with different magnetic field intensity. Alternatively, from Eq. (7) it can

be seen as the change in energy by moving the particle gyro-center with the ∇B drift along

the electric field direction. These two alternate points of view are equivalent and describe

the same process, which is the change in energy due to the particle guiding center motion

in the direction of the electric field, while µ is conserved. The second term in Eq. (8) is

the inductive effect of the time-dependent B-field. Together, these two terms provide the
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FIG. 2. Pulse geometry: the fields are non-zero inside the shaded region, which has a radial

width and an azimuthal extent 2δφ, and is centered around midnight.

adiabatic change in energy depending only on the change in the magnetic field intensity.

The second term only is responsible for particle acceleration in a betatron, however in a

loose way the whole process described by Eq. (8) is called “betatron acceleration.”

From Eq. (8) the change in particle energy depends only on the magnetic fields at the

particle initial and final positions, and the final energy of the particle is

W = W0
Bf

Bi
(9)

where W0 is the particle energy at the initial position r0 with magnetic field Bi. Bf is

the total magnetic field at the particle position r after interacting with the pulse. If we

model the background magnetic field in the equatorial plane by a dipole-like field with

B0(r, φ, z = 0) = BE (RE/r)3 ẑ, where BE is a constant, then the particle energy is enhanced

by a factor W/W0 = (r0/r)
3
. Note that in our model the value of BE during the particle

injection phase will be adjusted (usually lower than the value of the field at the Earth’s

surface) to include the effect of the ring current.

With these considerations in mind, we are interested in solving Eq. (4) in a pulse having

the electric field of the following form:

rEφ = −E0R(r + V0t)Φ(φ) (10)
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where E0 is a constant and has the dimension of distance times electric field, R(r + V0t) is

a radial wave form normalized to unity at the maximum amplitude, and Φ(φ) = 1 inside

a “wedge” centered around midnight and of finite azimuthal extent 2δφ (see Fig. 2), and

Φ(φ) = 0 elsewhere. There is no variation of the field in the z direction, and particles only

move in the equatorial plane z = 0.

The radial equation of motion for guiding centers of particles moving in the pulse is

dr

dt
=

−V0E0R(r + V0t)

V0BERE

(
RE
r

)2

+ E0R(r + V0t)
(11)

which can be exactly solved with the solution

1

r
− 1

ri
=

E0

V0BER3
E

∫ ξ

ξi

R(ξ)dξ (12)

where ξi = ri + V0ti, ξ = r + V0t, ri is the initial particle position at the time ti and r is

the particle position at the time t in the pulse. We note that the solution for r(t) depends

only on the radial electric field wave form R(r +V0t) and does not depend on the azimuthal

position as long as particles stay inside the pulse. The equation of the particle azimuthal

motion also depends on the radial wave form of the pulse. To solve for φ it is easier to use

r as the dependent variable instead of t and the azimuthal equation of motion is given by

dφ

dr
=

µ

qE0

(
3BER3

E

Rr4
+

E0

V0r2
− E0

V0rR

∂R

∂r

)
(13)

In the following sections we apply this expression and obtain the exact solutions of

the particle orbit by choosing a radial trapezoidal wave form R as shown in Fig. 3. The

radial pulse form at the time the particle encounters the pulse is shown in Fig. 3 with

R = (ξ − ξ0)/∆1 for ξ0 = r0 + V0t0 ≤ ξ ≤ ξ1 = ξ0 + ∆1, R = 1 for ξ1 ≤ ξ ≤ ξ2 = ξ1 + ∆2,

R = 1 − (ξ − ξ2)/∆3 for ξ2 ≤ ξ ≤ ξ3 = ξ2 + ∆3, and R = 0 otherwise. We solve for the

particle radial and azimuthal motion in the three sections of the trapezoidal pulse. While

our pulse form is a simplified one, the results are quite general: an arbitrary wave form can

be approximated by a number of pulses of trapezoidal form, and this number and the width
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FIG. 3. The radial pulse form of R at t = t0.

FIG. 4. Particle that enters at r0 + ∆ at time t0 and exits radially from the first part of the

pulse, at t = t1.

of the individual pulses can be adjusted to accurately represent the original wave form. The

azimuthal motion in any of these pulses will be of one of the three kinds encountered in our

trapezoidal pulse.

There are four classes of particles that interact with the pulse: the first is particles that

enter and leave the pulse radially; the second is particles that enter the pulse radially but

leave azimuthally; the third is particles that enter the pulse azimuthally but leave radially;

and the fourth is particles that enter and leave the pulse azimuthally. The orbit solutions for

these particles can be obtained analytically. In the following we present the particle orbit

solutions in each of the three regions of the pulse.
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A. Motion in the first part of the pulse

Considering particles that enter the first part of the pulse at t = t0 at initial position

(ri = r0 + ∆, φi) where 0 < ∆ < ∆1 and |φi| ≤ δφ, their orbit solutions can be obtained

exactly. From Eq. (11) the solution for r is

2V0BER3
E

E0∆1

(
1

r
− 1

ri

)
+

(
∆

∆1

)2

=

[
r − r0 + V0(t− t0)

∆1

]2

(14)

and the solution for φ can be obtained by integrating Eq. (13) and is given by

φ− φi =
−6µ

q

(
BER3

E∆1

2V0E0

)1/2
{

1

5

[(
1

r
− 1

a

)5/2

−
(

1

ri
− 1

a

)5/2
]

+
2

3a

[(
1

r
− 1

a

)3/2

−
(

1

ri
− 1

a

)3/2
]

+
1

a2

[(
1

r
− 1

a

)1/2

−
(

1

ri
− 1

a

)1/2
]}

+
µ

qV0

{(
1

ri
− 1

r

)
+

( E0r0

2V0BER3
E∆1

)1/2 [
sin−1

(
2ri

a
− 1

)
− sin−1

(
2r

a
− 1

)]}
(15)

where 1/a = 1/ri − (∆/G1∆1)
2 and G2

1 = 2V0BER3
E/(E0∆1r0). If particles enter the pulse

radially, ∆ = 0 and ri = r0. If particles enter the pulse azimuthally, φi = δφ for ions and

φi = −δφ for electrons.

Particles can leave the pulse azimuthally (if |φ| as given by (15) is larger than δφ), or

otherwise exit radially at

r(t1) =
ri

1 +
E0

(
∆2

1 −∆2
)
ri

2V0∆1BER3
E

(16)

where t1 is the time when particles exit the first part of the pulse radially and is given by

t1 − t0 = [∆1 −∆ + ri − r(t1)] /V0 (17)

It is interesting to note that if the gradient of the pulse magnetic field is larger than the

gradient of the background field so that the net magnetic field gradient is radially outward,

ions will drift eastward with φ increasing as r decreases as shown in Fig. 5. For such a case

the first term in Eq. (7) will cause the ions to lose energy because they move against the
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FIG. 5. Motion of an equatorially-trapped ion in the pulse; the initial energy of the ion is 58

keV; the ion initially drifts azimuthally at 9 RE, until it meets the pulse and enters it radially at

φ = 0 (midnight); the ion subsequently stays in all 3 parts of the pulse, until it goes out of the pulse

also radially, at 6.6 RE, and then drifts around the Earth at that distance; the different motions in

the 3 parts are numbered accordingly; the final ion energy is 150 keV; the pulse parameters are:

E0 = 7 mV/m · 9 RE, 2δφ = 30◦, V0 = 200 km/s, ∆1 = ∆2 = ∆3 = 9, 000 km.

electric field (similar argument applies for electrons). However, the second term µ∂B/∂t in

Eq. (7) is usually positive and larger in magnitude than the first term and thus particles

will move to a higher magnetic field location and gain energy.

B. Motion in the second part of the pulse

For particles entering the second part of the pulse at time ti and position (ri, φi) where

ri = r1 + ∆2 −∆, 0 ≤ ∆ ≤ ∆2, and |φi| ≤ δφ, the radial solution is obtained from Eq. (11)

and is given by

1

r
− 1

ri
=

E0

BER3
E

[r − ri + V0(t− ti)] (18)
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FIG. 6. Particle that enters the second part of the pulse at ri = r1 + ∆2 −∆ and time ti and

exits radially at time t2

and the azimuthal solution is given by

φ− φi =
µ

q

[
BER3

E

E0

(
1

r3
i

− 1

r3

)
+

1

V0

(
1

ri
− 1

r

)]
(19)

Particles which exit this second part radially do so at r2 = r(t2) = ri − V0(t2 − ti) + ∆

at time t2, and r2 is obtained from Eq. (12) and is given by

r2 =
ri

1 + E0∆ri

V0BER3
E

(20)

If particles enter this second part radially at ti = t1, then ri = r1 and ∆ = ∆2 in the

above orbit solutions. The radial positions for particles that enter and exit the second part

of the pulse are shown in Fig. 6. The azimuthal drift is mostly given by the background

magnetic field (the gradient of the pulse field is smaller), and ions drift westward (see Fig. 5)

and electrons eastward.

C. Motion in the third part of the pulse

The equations of motion in the third part of the pulse (with decreasing field) are similar

to the ones in the first part. For particles entering this third part at time ti and position

(ri, φi) where ri = r2 +∆3−∆, 0 ≤ ∆ ≤ ∆3, and |φi| ≤ δφ, the radial solution of Eq. (11) is
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FIG. 7. Particle that enters the third part of the pulse at ri = r2 + ∆3 − ∆ and time ti and

exits radially at time t3

1

r
− 1

ri
=

E0∆3

2V0BER3
E

[(
∆

∆3

)2

−
(

r − ri + V0(t− ti)

∆3

)2
]

(21)

and the azimuthal solution is obtained by integrating Eq. (13) and is given by

φ− φi =
6µ

q

(
BER3

E∆3

2V0E0

)1/2
{

1

5

[(
1

b
− 1

r

)5/2

−
(

1

b
− 1

ri

)5/2
]

− 2

3b

[(
1

b
− 1

r

)3/2

−
(

1

b
− 1

ri

)3/2
]

+
1

b2

[(
1

b
− 1

r

)1/2

−
(

1

b
− 1

ri

)1/2
]}

+
µ

qV0

(
1

ri

− 1

r

)
+

µ
√

b

qV0G3∆3

ln
2r − b +

√
(2r − b)2 − b2

2ri − b +
√

(2ri − b)2 − b2
(22)

where G2
3 = 2V0BER3

E/E0∆3 and 1/b = ∆2/∆2
3G

2
3 +1/ri. For particles exiting from the pulse

radially (as shown in Fig. 7) at r3 = r(t3) = ri + ∆− V0(t3 − ti), we obtain from Eq. (12)

r3 =
ri

1 + E0∆ri

2V0BER3
E

(23)

For particles entering the third part radially, the solutions are obtained by setting ri = r2,

∆ = ∆3, and ti = t2. In Fig. 5 one can see that in the third part of the pulse the background

field and pulse field gradients give rise to drifts in the same azimuthal direction, and so the

westward (for ions) drift is more pronounced than in the second part.
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D. General discussion of particle orbits

For particles that enter the first part of the pulse radially and do not exit azimuthally

from the pulse, the final radial exit position r3 is related to the initial radial distance r0 only

through the radial integration of the entire electric field structure as shown in Eq. (12). For

a trapezoidal pulse the integration can be easily performed and we can express the initial

coordinate r0 as a function of r3:

r0 =
r3

1− E0(∆1 + 2∆2 + ∆3)r3

2V0BER3
E

(24)

where the sum ∆1 + 2∆2 + ∆3 is just the value of the electric field integral
∫ ξf

ξi
R(ξ)dξ for

the trapezoidal pulse. Thus, the initial particle radial distance is related to the final particle

radial distance through the ratio of this electric field integral to the pulse velocity V0. For

a general pulse form (as shown in Fig. 8) the electric field integral can be approximated

by a finite-difference integration of the shaded area delimited by the curve representing rE

between the points of entrance and exit from the pulse. This integral is equivalent to a

number of trapezoidal pulses. The generality of the solution makes it straightforward to

calculate the particle motion in other situations such as a train of pulses or when a reflected

pulse is present, etc.

It is to be noted that if ∆1 and ∆3 of the trapezoidal pulse are too small, the large

gradients in the first and final part of the pulse will eventually cause the particles to exit

the pulse azimuthally. Fig. 9 shows the variation of the final radial distance r3 versus the

initial distance r0, and we see that for any set of pulse parameters, there is a maximum final

distance to which particles that stay all the time in the pulse can be swept — this distance

is the limit of r3 given by (24) as r0 →∞. This limiting value is

r3max =
2V0BER3

E

E0(∆1 + 2∆2 + ∆3)
(25)

There are different kinds of particle orbits (as defined by how they enter/exit from the

pulse). Particles that enter and exit the pulse radially are the ones that will travel the largest
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FIG. 8. An arbitrary pulse form can be de-composed into a large number of trapezoidal pulses,

the motion in which has been completely solved.

FIG. 9. Final versus initial radial distance for particles that stay in all three parts of the pulse

(with the starting position of the pulse taken at a distance greater than r0); the pulse parameters

are the same as in Fig. 5.
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distance and have their energy enhanced by the largest factor. Because the background

particle distribution decreases with both energy and radial distance, the energetic particle

flux enhancement at the observation point will be mainly due to these particles. Particles

that enter or exit the pulse azimuthally contribute less to the enhanced particle fluxes.

We now take a closer look at the azimuthal motion. We discuss ions only, and the electron

case is similar except for the different drift direction. In parts 2 and 3 of the pulse ions drift

westward, but in the first part they can drift either eastward or westward depending on

whether or not the gradient of the pulse magnetic field is larger in magnitude than the

gradient of the background field. A case where the azimuthal drift is entirely eastward is

that of particle 1 in Fig. 10, while particle 3, starting at a closer distance, encounters a much

stronger background magnetic field (and gradient), and its azimuthal drift is westward. It is

possible for an ion to arrive at the distance where the background and pulse field gradients

are equal but opposite while the ion is still in the first part of the pulse, in which case it

will reverse its azimuthal motion from an eastward direction to a westward one (particle 2

in Fig. 10). For this case the ion will be able to stay even in a very narrow pulse, because

the net azimuthal drift is much lower than in the other two cases.

The condition for particles not to exit azimuthally from the pulse is |φ| ≤ δφ, which

gives for each initial angle the maximum µ particles entering the pulse may have in order

to stay in all three parts of the pulse. The value of µmax can be obtained from Eq. (15),

(19) and (22). Higher energy particles with µ > µmax will exit the pulse azimuthally. These

particles, in order to be swept to the same location as the particles exiting the pulse radially,

must come from initial distances closer to the Earth, and their energy enhancement will be

smaller.

Because the number of particles that enter the pulse azimuthally is usually small for fast

pulses, their contribution to the flux increase will not be large; however, they can account

for the initial flux increase. Entering the first part of the pulse is only possible at distances

for which the gradient of the pulse field is smaller than the background field gradient. As

particles enter the pulse azimuthally they experience a sudden transition from zero to non-
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FIG. 10. Different kinds of azimuthal motion in the first part of the pulse; particles 1, 2 and

3 start moving into the first part of the pulse, having the same φin = 0 and the same initial

energy W = 500 keV, but from different initial radial positions: 10, 8.7 and 7 RE, respectively;

particle 1 drifts entirely eastward, particle 2 starts drifting eastward then reverses its drift as it

arrives in regions of higher background field, and particle 3 has an entirely westward drift; the

pulse parameters are E0 = 3 mV/m · 10 RE, 2δφ = 50◦, V0 = 200 km/s, ∆1 = ∆2 = ∆3 = 9, 000 km;

the pulse starts at 10 RE.

zero pulse fields in the φ direction at the azimuthal limits of the pulse. The particle drift

due to that gradient is ignored because there is no physical “shock” at the azimuthal edges

of the pulse. Particles that cannot azimuthally enter the first portion of the pulse will stay

at |φ| = δφ until they enter the pulse in the second part.

E. Particle flux

Having derived the analytical orbit solutions, we now want to obtain the particle flux

at the observation point (geo-synchronous orbit usually), in order to compare it with the

flux measured by satellites. Some satellites measure the omnidirectional flux [10], which is

the flux that covers all solid angles. Because we only consider 90◦ pitch-angle particles, in
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order to make a meaningful comparison between theory and observation we will calculate

the directional flux which is the number of particles per unit time, energy, area and solid

angle coming from a given direction: j = ∂2J/(∂Ω∂W ) [10], where J is the omnidirectional

flux, i.e. the number of particles per unit time and area. In our case, the directional flux

for 90◦ pitch-angle particles is j⊥ [10]. For an isotropic flux, J = 4πj, but the magneto-

spheric particle population is not isotropic and furthermore particles with non-zero v|| will

move differently in the pulse compared to the particles we study, so we can not infer the

omnidirectional flux from our model. However, we can obtain the ratio of injected flux for

particles with energy within a certain energy range to the background flux in our model

and compare it with the relative level of the injected omnidirectional flux to the background

omnidirectional flux obtained from satellite observations. Some satellites measure the di-

rectional flux though, and in this case the problem is simpler: the comparison can be made

directly between our calculated and observed fluxes.

The directional flux is related to the particle distribution function by [11]:

F (r,v, t) =
m2

2W
j (26)

Liouville’s theorem states that the particle density in phase space is conserved along the

trajectory, which can be written as dF/dt = 0 if we neglect collisions on the short time scale

of the injection. So F (ri,vi, ti) = F (rf ,vf , tf ). Then, from Eq. (26) j/W is constant along

the particle trajectory. Because the particle energy W at rf is related to its initial energy

at ri by the ratio of the magnetic field intensity at these positions, the differential flux can

be obtained in each region of space.

To use the invariance of the phase space density along the particle trajectory, we

transform the distribution function from a function of velocity to a function of energy:

F (v, r) = 1/(4π)
√

m/(2W )f(W, r, φ), so the directional flux j at r for a particle with en-

ergy W can be expressed as

j =
W

π
√

Wi

(
1

2m

)3/2

f(Wi, ri, φi, ti) (27)
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where W = WiB(r, φ, t)/B(ri, φi, ti). For particles outside the pulse in a dipole-like back-

ground field W = Wi(ri/r)
3. The above formula is valid for any position along the trajectory

of a particle that starts at (ri, φi) with energy Wi. One notices that the injected flux varies

as r−3 [11] and it is to be added to the background particle flux of the same energy at the

injection position.

III. PARTICLE INJECTION IN A SUBSTORM EVENT

The solutions obtained in the previous section are restricted to non-relativistic particles,

which is correct for ions with enhanced flux observed during strongly disturbed magneto-

spheric events and is also a good approximation for electrons with energy on the order of

100 keV range observed during substorm injections.

A. Ion injection

We first present an application of our analytical model to an energetic proton injection

event observed by LANL geosynchronous satellite sensors on January 10, 1997 (see the left

panel in Fig. 11) during a substorm. For this event, we consider a three-part trapezoidal

pulse of the form shown in Fig. 3, centered at midnight local time (φ = 0) with the pulse

parameters: E0 = 7.5mV/m · 9RE , ∆1 = ∆2 = ∆3 = 6, 000 km, and 2δφ = 30◦. The pulse

Earthward propagating speed is chosen to be V0 = 200km/s. The pulse electric field will

produce a particle E×B speed between 60 and 100 km/s for BE = 0.22G, which is consistent

with the observed plasma flow speed in the region between 6.6RE and 9RE.

With the above parameters (which a posteriori are found to give flux levels consistent

with those observed), the maximum initial radial distance ri of protons that can be swept

by the pulse to the geosynchronous orbit (rgeo = 6.6RE) is calculated from Eq. (24) to be

8.6RE so the front edge of the pulse must be at a radial distance greater than or equal to

8.6RE in order to sweep these particles to the geosynchronous orbit. Because the pulse spans

about 3RE, the substorm formation region (the center of the pulse) will be at a distance
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greater than about 10RE. The maximum increase in the particle energy due to betatron

acceleration is about (ri/rgeo)
3 ≈ 2.2 times. If t = 0 is the moment the pulse arrives at

8.6RE, the pulse will arrive at 6.6RE at t ≈ 1min. Protons with initial distances very close

to 6.6RE will arrive at the geosynchronous orbit first. Protons from 8.6RE are swept to the

geosynchronous orbit at about t3 ≈ 2min 30 s and these particles exit from the tail edge of

the pulse. This means that the initial injection event will span a time interval of less than

2min. During this short time interval, protons with a wide range of energies will be swept

to geosynchronous orbit, thus accounting for the “dispersionless” nature of the injection.

One should keep in mind that these protons arrive at geosynchronous orbit with different

azimuths, and they subsequently drift around the Earth to the observing satellite location.

To find the energy range for which protons will not exit the pulse azimuthally, we compare

φ obtained from Eqs. (15), (19), (22) to the pulse azimuthal limits. For our pulse parameters,

the “maximum energy” for such protons at r1 and φ = δφ is W1max ≈ 90 keV, so the

maximum final energy these protons can have at its final position is W1max · (r1/rgeo)
3 ≈

160 keV. Thus, higher energy protons will have to be swept from a distance closer to the

Earth in order to arrive at 6.6RE.

Now we want to obtain the injected flux. We model the initial background proton

distribution to be uniform azimuthally and as a kappa distribution in energy [12]:

f(W, r) = f0 · g(r)

[
1 +

W

(κ− 1.5)ε

]−κ−1

(28)

with ε being the average energy, κ a parameter and f0 a constant. To model a moderately ac-

tive plasma sheet we choose κ = 6 and ε = 7keV for protons in our region of interest (6.6RE

to 9RE), similar to values reported in [13] and also used in [14]. The radial dependence g(r)

is taken to be the one used in [1], g(r) = (r/RE − 3)4/(r/RE)
10

for r < 12RE.

In order to obtain the proton flux as a function of energy and time at the observing

satellite location, we need to obtain the proton flux at (rgeo,−δφ) location as a function of

energy and time while the pulse moves across the geosynchronous orbit and at (rgeo, |φ| ≤ δφ)

locations when the tail edge of the pulse just leaves the geosynchronous orbit. These particles
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will then ∇B drift around the Earth to the observing location. We perform numerical

calculations by employing our analytical orbit solutions to a distribution of particles in the

region of interest. We take particle cells every 1000 km between 6RE and 9RE, every 1.5◦ in

azimuth and with 20 different energy channels within the energy range of interest. The cells

have to be spaced densely enough so that the motion of phase space points from the same

cell is not chaotic, i.e. a slight variation in the initial location and energy does not influence

much the final values [14]. Each particle cell is “labeled” by its initial radial distance and

energy, and Eq. (27) is used to obtain the particle differential flux corresponding to that

cell at the observation point. After that, we integrate the flux over the energy range of

interest. We follow the motion of the cells during the injection event and the subsequent

drift echoes, recording the cells that are injected at the radial region [rgeo − δr, rgeo + δr],

with δr = 500km, and calculating the corresponding flux at the satellite (the geosynchronous

motion of the satellite is also included in the calculation). We obtain an integrated flux over

the energy range of interest, and we plot this flux with a time step of 100 s. After we

obtain the particle flux at the observing satellite location, we multiply the particle flux by

an exponentially decaying function in time with an e-folding time for protons of 40 minutes

for our energy ranges. This modification of particle flux after the particles are swept to the

geosynchronous location is to simulate the subsequent loss (mainly by pitch-angle diffusion

due to cyclotron instabilities, as shown in [15]). This practice was also used in previous

calculations [1]. We also note that in our model particles interact with the pulse only once

because the drift period at rgeo is about 11min for 600 keV particles and is much larger

than the time (about 2min) needed for all three parts of the pulse to pass through the

geosynchronous orbit.

The simulation result is presented in Fig. 11. We notice that the flux enhancement is

quite large, almost two orders of magnitude larger than the background flux in the same

energy range. The small-scale fluctuations observed in later drift echoes are due to the finite

number of cells considered and the time step used for plotting and become smaller as the cell

number is increased. From the comparison of the simulated particle fluxes with the observed
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FIG. 11. Proton flux at geosynchoronous orbit, integrated over the following energy ranges,

from top to bottom: [113, 170] keV, [170, 250] keV, [250, 400] keV; on the left is the flux measured

by sensors on LANL satellite 1991-080 (at local time LT=UT+4:40); the right graph shows the

simulated flux at the satellite position; both the satellite data and simulated flux plots have a time

resolution of 100 s.

ones we find a very good agreement in the major features of the particle flux even for such a

simple pulse form. These features include the ratio of the injected flux versus the background

flux and the relative positions of the drift echoes. There are also differences between theory

and observation mainly because our model only treats 90◦ pitch-angle particles, while the

satellite sensors register all particles. Another cause for the difference is that our pulse form

is a simplified one. Another difference, the higher flux between two adjacent drift echoes in

the observed flux, can be due to a physical mechanism that is not included in our model;

i.e., the higher-energy particles (which arrive earlier) through other processes can modify

the background population and thus increasing the flux for lower energy ranges [5].

In order to explain the very large increase in the flux of particles with energy greater

than 300 keV observed in some events, our pulse parameters have to be modified, to have

a larger E field and/or azimuthal extent. For example, if the azimuthal extent of the pulse

is taken to be 2δφ = 100◦ with the other parameters unchanged, particles can be swept

from 8.6RE with energies reaching 530 keV at 6.6RE because particles with higher initial

energy can stay in the pulse and be swept to the geosynchronous location. The flux increase

depends even more sharply on the E-field of the pulse. A field of 15mV/m at 9RE (with
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FIG. 12. Observed and calculated proton fluxes at geosynchronous orbit for a pulse with

velocity 100 km/s; all other parameters are the same as in Fig. 11, except that for this case

E0 = 3.5 mV/m · 9 RE.

the other parameters unchanged) can sweep particles from about 12.3RE to geosynchronous

orbit. For the maximum initial energy of about 16 keV, betatron acceleration will energize

such a particle to 105 keV at geosynchronous orbit. These extreme field values however are

not expected to appear during many substorms, which is consistent with the observations

in [2], where it is noticed that such very high energy injections occur in less than 10% of

the total number of substorms surveyed. However, in some substorm events [8] the E-field

can be higher (30 mV/m) at about 15RE, which corresponds to 50 mV/m at 9RE in our

model, due to the 1/r dependence, and also V0 can be much higher (500 km/s). A pulse

with these parameters can energize particles to much higher energies and may be responsible

for the 10% of the cases mentioned. Intermediate values of the electric field (15mV/m at

15RE) have also been reported [7] and can also be responsible for higher energization than

presented in this example.

It is to be noted that the pulse parameters we chose above are not the only ones to

give flux levels consistent with observations. Observations show that there is a wide range

for the values of the electric field observed at the time of substorms as well as the plasma

Earthward flow speed. Thus, it is instructive to show how a pulse with lower velocity and

electric field can affect the proton flux. We choose both V0 and E0 to be close to one half
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of the values in the previous simulation case (V0 = 100km/s, which is also chosen in [1]

in their simulation, and E0 = 3.5mV/m · 9RE) with all other pulse parameters taken to be

the same. The simulated proton fluxes are shown in Fig. 12 and are very similar to the

previous case. All energized particles in this case also arrive from distances less than 9RE.

The small difference in the flux enhancement between these two cases is mainly due to the

different particle azimuthal motion. With a lower propagating velocity in the second case,

more particles will enter the pulse azimuthally in the radial distance of 6.6 — 9RE. However,

because more particles also exit the pulse azimuthally, on average the number of particles

staying in all of the pulse is about the same. Thus, as can be seen in Fig. 12, the obtained

flux levels in the second case are very close to those obtained in the first case.

B. Electron injection event

While our calculations have been performed for non-relativistic particles, our orbit so-

lutions for electrons with the energy range of 100 — 300keV are good approximations to

the exact relativistic ones. Thus, we look at the first electron injection event on January

10, 1997 (see Fig. 13), which is the one studied in [1] in their particle simulation model.

We note that while their model uses a plane-wave E-field in Cartesian coordinates, in our

model we consider that the geometry of the problem requires a cylindrical wave form (with

a field of the form Eφ(r + V0t, φ) = −(E0/r)R(r + V0t)Φ(φ), as given by Eq. (10)), because

a large portion of the particle trajectory takes place at distances from Earth less than 9RE,

where the background field has a significant spherical symmetry. A plane-wave solution is

certainly not suitable in such a geometry for pulses of large azimuthal extent, and in general

a wave solution with constant V0 and an E-field not varying along the radial direction of

propagation will not conserve the field energy in a cylindrical geometry because the field

energy density would be the same in such a wave, but the volume that the wave energy is

confined decreases as the wave propagates towards lower r.

The pulse parameters for this electron injection event are: E0 = 4.4mV/m · 9RE, V0 =
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FIG. 13. Electron flux in the vicinity of 6.6 RE as measured by three LANL satellites (left panel)

and simulated at that satellite position (the graphs on the right); numbers 1, 2 and 3 correspond

to satellites 1990-095 (LT = UT - 2:30), 1991-080 (LT = UT + 4:42) and 1994-084 (LT=UT +

6:54), respectively. The three energy ranges, shown in different shades of grey, are, from top to

bottom in each graph: [105, 150], [150− 225], [225− 315] keV.

100 km/s, ∆1 = ∆2 = ∆3 = 11, 000 km, and 2δφ = 30◦. The background magnetic field

parameter is chosen as BE = 0.3G which corresponds to similar average background field

at geosynchronous orbit as that used in [1]. The electron distribution parameters are taken

to be κ = 4 and ε = 2keV, which is larger than the value used in [1], because our region

of interest is closer to Earth than the one in their model. To model the particle loss after

injection by the pulse we use a decay factor having an e-folding time of 3 hours, which

is the value used in [1] for the same event. With these parameters the largest distance

electrons are injected from is 8.9RE, corresponding to those electrons that enter and exit

the pulse radially. These electrons will experience an energy increase of 2.45 times via

betatron acceleration (actually a little less, due to relativistic corrections). Other electrons

will arrive at 6.6RE from distances closer to the Earth and will be less energized but will

account for the initial flux increase.
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Fig. 13 shows the observed and simulated fluxes at the geosynchronous orbit for three

satellites. The first satellite (1990-095) is near midnight (at about 2:00 local time) at the

time of the injection, and thus the first peak at its position is quite narrow. The other 2

satellites are located eastward relative to the first one, and so there is a larger dispersion

seen at these locations, due to the different azimuthal drifts for different electron energies.

In all graphs, the simulated flux peaks are narrower than the observed ones as in the ion

injection case and this is due to the reasons already presented.

A more realistic model would have to consider the possibility of a small number of par-

ticles being injected at azimuths outside the finite azimuthal extent of the pulse considered

here. Also, the higher energy particles arriving earlier at the satellite location may energize

particles in the local population there (perhaps by the instabilities they drive) thus the ob-

served fluxes will be wider than our calculated ones. Another possible improvement is to

include relativistic effects on the electron calculation in these energy ranges. For relativistic

particles, the radial equation of motion is the same as for non-relativistic ones (the E×B

is the same), so most of the particles (the ones that enter and exit the pulse radially) will

come from the same distance as in the non-relativistic case. A simple calculation shows

that the energization our highest energy electrons (Wf = 315 keV, so γf = 1.6) undergo is

lowered from the calculated non-relativistic value of 2.45 to 2.2, and so the change in the

initial distance (to obtain the same energization as before) is less than 0.5RE.

In conclusion, one sees that while all those effects mentioned would provide a “smoother”

flux, they will not have a large effect on the peak flux values, and our model gives a good

approximation for the injected flux levels.

It is to be noted that this energetic electron flux enhancement event has also been modeled

by test particle simulations [6,1] with a good agreement with observation. However, there is

a clear difference between our model and the test particle simulations in [1]. In our model we

use an electric field pulse with a 1/r factor multiplying a constant radial form in the pulse

propagating frame so that the peak electric field amplitude increases as the pulse propagates

toward the Earth. In the simulation study in [1] a much more complicated electric field wave
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form with a peak amplitude constant in time was used. In our model we find that the initial

radial distance from which the particles are swept to the geosynchronous orbit is at around

8−9RE and thus the flux enhancement observed at geosynchronous orbit is due to electrons

with an initial distance between 6.6RE and 9RE. On the contrary, the simulation results

in [1] indicate that more than 90% of the energetic electron flux enhancement is due to

electrons with an initial distance ≥ 9RE.

IV. SUMMARY AND CONCLUSIONS

Energetic particle flux enhancement events in a wide range of magnetospheric distur-

bances can be modeled by considering particle interaction with an Earthward-propagating

pulse with consistent E (westward directed) and B fields. Particle interaction with this

pulse can account for the observed “dispersionless injection” events associated with these

disturbances. As particles are swept Earthward by the pulse via E × B drift motion to a

higher magnetic field location, their energy will be greatly increased due to the conservation

of magnetic moment. Depending on the azimuthal extent of the pulse and the magnetic

moment of the particles, particle azimuthal drift motion determines how long particles can

stay in the pulse and thus their final position and energy gain. Analytical orbit solutions

for non-relativistic particles interacting with a cylindrical-wave pulse of a trapezoidal radial

field profile and a finite azimuthal extent has been obtained. The model was then applied

to energetic particle flux enhancement events associated with substorms, and the simulated

particle fluxes are in good agreement with satellite observations.

Several general features of the particle orbit and energization can be drawn from this

study. First, the particle energy gain depends only on the initial and final values of the

magnetic field at the particle positions. Particles entering and exiting the pulse radially will

be swept the longest distance and their energy gain will be the largest. Second, above a

critical energy (which depends on the pulse parameters) particles can not stay in all three

parts of the pulse and will exit the pulse azimuthally and they will not be as highly ener-
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gized. These particles azimuthally exiting the pulse at the observing satellite radial distance

contribute to the initial phase of the flux enhancement, but have a small contribution to the

overall observed flux level. Third, particles swept to the final location (rf , φf , tf) come from

a larger initial radial distance at (ri, φi, ti), which is determined by the pulse parameters and

the particle magnetic moment; in general, ri will be larger if the pulse propagating speed V0

is lower and the radial pulse length is larger because particles will stay longer in the pulse.

Also, ri will be larger if the electric field amplitude is larger because the larger E×B drift

will be closer in magnitude to V0 thus allowing the particles to remain in the pulse longer.

A great advantage of our model is that analytical particle orbit solutions are obtained

and provide valuable physical insights into the problem and greatly reduce the amount of

numerical computation needed for obtaining the injected fluxes at the observing satellite

location. The approach of our model is also general in the sense that any radial wave form

can be approximated by linear segments that we considered, and analytical orbit solutions are

available. Thus, the injected fluxes can be easily obtained numerically by decomposing the

pulse into a number of linear segments depending on the required accuracy for approximating

the pulse form.

The good agreement between our simulated particle fluxes and the observed fluxes as

well as other comparison studies of test particle simulations [6,1] indicate that dispersionless

energetic particle flux enhancement can be modeled by an Earthward propagating pulse

with a westward electric field. Thus, more complex models such as the injection boundary

model [16] are not necessarily needed in order to explain the dispersionless particle injection

events. However, there is a clear difference between the results of our model and the results

of test particle simulations in [1]. From our model we obtain the initial radial locations from

which the particles are injected to the geosynchronous orbit to be at around 8−9RE, which

is much closer to the Earth than those obtained from the simulations in [1], who conclude

that more than 90% of the energetic electron enhancement is due to electrons with an initial

distance ≥ 9RE).
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